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Summary, The second-quantization magnetic dipole operator that arises when 
London atomic orbitals are used as basis functions is derived. In atomic units, the 
magnetic dipole operator is defined as the negative of the first derivative of the 
electronic Hamiltonian containing the interaction with the external magnetic field. 
It is shown that for finite basis sets, the gauge origin dependence of the resulting 
magnetic dipole operator is analogous to that of the exact operator, and that the 
derived operator converges to the exact operator in the limit of a complete basis 
set. It is also demonstrated that the length expression for the rotatory strength in 
linear response calculations gives gauge-origin-independent results. Sample calcu- 
lations on trans-cyclooctene and its fragments are presented. Compared to conven- 
tional orbitals, the basis set convergence of the rotatory strengths calculated in the 
length form using London atomic orbitals is favourable. The rotatory strength 
calculated for trans-cyclooctene agrees nicely with the corresponding experimental 
circular dichroism spectrum, but the spectra for the fragment molecules show little 
resemblance with that of trans-cyclooctene. 

Key words: Electronic circular dichroism - Trans-cyclooctene - London atomic 
orbitals 

1. Introduction 

The differential absorption in the visible and ultraviolet regions of optically active 
molecules is referred to as electronic circular dichroism (ECD) or just circular 
dichroism (CD) and is determined by the electronic rotatory strength [1]. The sign 
of the rotatory strength is characteristic for the individual isomers of a pair of 
enantiomers. The rotatory strength corresponds to the imaginary part of the dot 
product of the electric and magnetic transition dipole moments [1]. In finite basis 
calculations, the length expression of the rotatory strength is gauge-origin depend- 
ent, whereas the velocity expression is gauge-origin independent [1]. Finite basis 
set calculations of the dipole length transition moments converge faster toward 
basis set limit results than the corresponding dipole velocity calculations. From 
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a computational point of view the length expression is therefore to be preferred, 
whereas from a gauge-origin point of view the velocity representation must be 
preferred. In this paper we show that when the perturbation-dependent London 
atomic orbitals (LAO) are used [2], the length expression of the rotatory strength 
becomes gauge-origin independent. 

London atomic orbitals, which by some authors are referred to as gauge 
invariant or gauge including atomic orbitals (GIAO), have previously been used 
successfully in calculations of a variety of magnetic molecular properties [2-15]. 
These include the pioneering calculations of nuclear magnetic shieldings and 
magnetizabilities by London [2], Hameka [3, 4], and McWeeny [5], the calcu- 
lations of magnetic circular dichroism by Seamans and Linderberg [6], and the 
calculations of g-tensors for electron spin resonance by Dalgaard [7]. Later ab 
initio calculations include nuclear shieldings [8-11], magnetizabilities [12, 13], and 
the atomic axial tensors entering the intensity expression for vibrational circular 
dichroism [14, 15]. Besides giving gauge-origin-independent magnetic properties, 
LAO calculations have been shown to have superior basis set convergence charac- 
teristics compared to approaches where perturbation-dependent basis set are not 
used. This faster convergence arises since for a one-electron system the LAOs 
respond correctly to a magnetic field through first order. In this paper we compare 
the basis convergence of rotatory strengths calculated in the random phase approx- 
imation [16, 17] (RPA) from the length and velocity expressions using ordinary 
basis set and from the length expression using LAO's. 

The rotatory strength corresponds to the residue of the electric dipole-mag- 
netic dipole linear response function [17, 18]. In a companion paper we show how 
linear response functions and their residues can be obtained from perturbation- 
dependent basis sets [19]. In this paper, we consider the calculation of rotatory 
strengths using the perturbation-dependent LAOs. The LAO magnetic dipole 
operator is defined as the negative of the first derivative of the second-quantization 
electronic Hamiltonian in the limit of zero magnetic field. The second-quantization 
Hamiltonian contains interaction terms due to the external magnetic field. In 
addition, the basis set dependence of the magnetic field is incorporated in this 
Hamiltonian. We prove that in the limit of a complete basis set, this magnetic 
dipole operator becomes identical to the conventional dipole operator. As shown 
in the companion paper [19], it is convenient to use the so-called natural orbital 
connection for deriving this first derivative Hamiltonian. If this connection is used, 
the conventional magnetic dipole operator is obtained in the limit of a complete 
basis even if the terms coming from the differentiated creation and annihilation 
operators are neglected. This is not true for any other connection. We refer to the 
companion paper for a more detailed discussion of this point [19]. 

We have implemented the theory for London ECD in a computer program, and 
sample RPA calculations of the rotatory strength for trans-cyclooctene are re- 
ported. The experimental CD and absorption spectra for this molecule are known 
[20], and semiempirical [21] as well as ab initio calculations using conventional 
basis sets have been reported [22]. See Ref. [22] for a survey of earlier calculations 
and interpretations. 

The theoretical implications of using LAOs in calculations of magnetic dipole 
moments and electronic rotatory strengths are discussed in the next section. In 
particular, the magnetic dipole operator as defined above is derived and analyzed 
separately and in conjunction with ECD calculations. In Section 3 we report 
calculations on trans-cyclooctene and its fragments. The basis set convergence of 
the rotatory strength is compared for calculations performed with LAOs and with 
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ordinary atomic orbitals. The absorption and CD spectra of trans-cyclooctene 
(based on the eight lowest excitations of A and B symmetries) are computed and 
compared with the experiment and with spectra calculated for the fragment 
molecules. The last section contains some concluding remarks. 

2. Theory 

The differential intensities observed in circular dichroism spectra are determined 
by the rotatory strength, which for a transition between kUo and ku, corresponds to 
the imaginary part of the dot product between the electric and magnetic transition 
dipole moments [1] 

R(0 --* n) = Im[-(%l~,ll ~,)  ( ~ n l ~ l m a g l  tPo)]. (1) 

The electronic and magnetic dipole operators/~ and/lmag are in atomic units given 
by the expressions 

I~o, = - Z  rl + Z ZMRM, (2) 
i M 

1 ~ rl xpi + RM xPM, (3) 
]lmag ~ - - 2  i 

where r~ and pi are the position and momentum of the ith electron, and 
ZM, MM, RM, and PM are the charge, mass, position, and momentum of the Mth 
nucleus. The expressions (1)-(3) correspond to the so-called length formulation of 
the rotatory strength. 

CD as observed in visible and ultraviolet spectroscopy is assigned to electronic 
transitions and termed electronic circular dichroism (ECD). Ab initio calculations 
of ECD and electronic absorptions are in the Born-Oppenheimer approximation 
carried out for a particular molecular conformation. In this approximation, 7/o and 
~, in Eq. (1) are electronic wave functions, and the terms involving the nuclear 
parts of the electric and magnetic dipole transition elements therefore vanish. 
Changing the gauge origin from O to O1 = O + Vleavesp~ invariant but changes r~ 
to r~ - V. While the electric transition dipole moment is unaltered by such a shift of 
origin, the magnetic transition dipole moment changes: 

+~Vx(~U0 ~ p ,  ~u).  (4) 

As is seen from the hypervirial theorem, for exact wave functions, (%lE~pil %7 
is parallel to (g%[Y.iri[~P,) and the length form of the rotatory strength is 
then origin independent, while for finite basis sets this is in general not true. 
One remedy is to use the dipole velocity approximation for the electric dipole 
transition elements, since the rotatory strength is then origin independent also 
for approximate wave functions. Another solution is to use London orbitals, for 
which we will show that the length expression in Eq. (1) also becomes gauge-origin 
independent. 
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A. The effective angular momentum operator for finite basis sets using 
London atomic orbitals 

In first quantization, the angular momentum operator is obtained by differenti- 
ating the electronic Hamiltonian that contains the magnetic interaction once with 
respect to the external magnetic field, multiplying by a factor of two, and taking the 
zero-field limit. In analogy, we define the second-quantization angular momentum 
operator as the zero-field limit of the second-quantization electronic Hamiltonian 
differentiated with respect to the field and multiplied by two. In atomic units, the 
magnetic dipole operator for a singlet state is obtained by multiplying the angular 
momentum operator by -½. Since the operators of second quantization are 
projected onto the space spanned by the basis functions, they depend on this basis. 
Therefore, the use of LAOs will be reflected in the actual form of the magnetic 
dipole operator. 

The derivation builds extensively on the following three papers: The first, by 
Helgaker and Jorgensen [23], is referred to as Paper 1, the second, by Baket al. 
[14], is referred to as Paper 2, and the third, by Olsen et al. [19], is referred to as 
Paper 3. 

In Paper 1 the second-quantization electronic Hamiltonian appropriate for 
magnetic property calculations with LAOs is expanded in the magnetic field. From 
our previous definition it may sound as if the magnetic dipole operator was 
basically obtained in Paper 1. However, this is not the case. The expansion of 
the Hamiltonian in Paper 1 was intended only for calculations of differentiated 
expectation values. The terms emerging from differentiated creation and annihila- 
tion operators were therefore ignored. In order to obtain the magnetic dipole 
operator, these terms must also be considered. 

Paper 2 concerns vibrational circular dichroism and includes both the general 
formula for differentiated creation operators and the specific formula for differenti- 
ation with respect to magnetic field when LAOs are used. 

The second-quantization magnetic dipole operator can be obtained from 
Papers 1 and 2, but in these papers the orthogonal molecular orbitals were 
connected from one value of B to another by the symmetric connection. In this work 
we use the natural connection introduced in Paper 3. This connection ensures that 
orthogonal molecular orbitals at different B values are as similar as possible to the 
field free orbitals. The natural connection results in an easier and more elegant 
derivation of the angular momentum operator. To demonstrate this point, we here 
also derive the operator using the symmetric connection. 

As discussed in Paper 1, the second-quantization spin-free non-relativistic 
electronic Hamiltonian for a system exposed to a magnetic field represented by the 
vector potential A is 

1 
/~(A) = ~ ~ , (A)Em,(A)  + ~ F~ ~,,.,q(A)e~.,q(A). (5) 

m n  m n p q  

Since we consider a situation where the magnetic moments are all zero, the 
magnetic vector potential as function of the position v is 

A(v) = ½B × (v - o). (6) 

where B is the magnetic field and O the gauge origin. The integrals h.,.(A) and 
~,,,vq(A) as well as the excitation operators Emn(A ) and emnpq(A) refer to a set of 
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orthonormal molecular orbitals (OMOs) expanded in LAOs. The LAOs are 
defined as [2] 

co.(A~.) = exp(-iA~,' r)L,, (7) 

where L, = L,( r - R u )  is an atomic orbital (AO) centred on a nucleus at Ru, 
r denotes electron coordinates, and 

A~ = 1B × (R,, -- O) (8) 

is the magnetic vector potential found at the position R~,. The so-called unmodified 
molecular orbitals (UMOs) are defined as linear combinations of the LAOs: 

c Oi(A ~) = ~ K,i(Bo)~%(A,,). (9) 
~t 

The expansion coefficients K~,~(Bo) are the amplitudes for the optimized mole- 
cular orbitals at the reference field B0, which in this work is equal to zero. In 
general, the UMOs are non-orthogonal. The set of OMOs is expanded in the set 
of UMOs as 

cpi(A c) = ~, Tji(A¢)~(A*), (10) 
J 

where the expansion coefficients T~i(A °) depend on A ¢. The orthonormality require- 
ments on the OMOs for all B together with additional conditions needed to specify 
T uniquely, define the various orbital connection schemes. As already noted we will 
consider the natural and symmetric connections, but for now the connection is 
unspecified. 

Using our definition of the second-quantization angular momentum operator 
(twice the zero-field value of the first derivative of the electronic Hamiltonian with 
respect to B for zero nuclear magnetic moments), we obtain from Eq. (5) the 
magnetic dipole operator 

L ( o )  = + 

1 , ~(n) (0  e~. 1 + ~ ~. (g , , ,pq,)  pq + Om,pqe~),pq(O))_j. (11) 
m n p q  

The superscripts (B) indicate first-order differentiation with respect to B. 
To bring the angular momentum operator into a more useful form, we must 

evaluate the terms on the right-hand side. Using Eq. (10), it is straightforward to 
re-express the OMOs in Eq. (11) in terms of integrals over UMOs, taking advan- 
tage of the fact that Eq. (11) represents the zero-field limit: 

hm. = h,.., (12) 

~(n) h(") + ~.(T(n)h + T(B)*h ~ (13) 
m n  ~ , ~ m n  m o , ~ o n  ~ n o  , , m o / ,  

o 

(lmnpq = gmnpq, (14) 

O(e) g(mB)pq + ~ ( T  (s)~ T(S)*n r(,no )" T(B)*'~ ~ (15) 
m n p q  ~ m o t . J o n p q  - ~  - - n o  ~ m o p q  "~- p f f m n o q  " ~  - - q o  ~ m n p o ] "  

o 
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Using Eq. (9), all the U M O  integrals except the differentiated connection matrix 
can be rewritten in terms of AO integrals 

h,.. = ~ K~,,.K,,.h~ .... (16) 
pV 

h~n) = V K* ~ h ~n) (17) 
,uv 

g m n p q ~_~ * * = KumKvnKppKq~9~;~, (18) 
p v p a  

g(B) K* M 74" R" ~(B) ,...q = Z (19) ~ ~ ~ m ~  ~ v n ~  ~ p p ~  ~ q a  f f  lavpa ~ 

~ v p a  

In order to express the differentiated connection matrix as linear combinations 
of atomic integrals, we must specify the connection. According to Paper 3, in the 
natural connection the differentiated connection matrix becomes 

, / I &o,, \  
T(,.n). = - ~  K,,.,K~. ~2,, - -~  ) .  (20a) 

Alternatively, if the symmetric connection is used we know from Papers 1 and 2 
that the differentiated connection takes the form 

m n :  K,,~K~, - ~  (co,, ] co~). (20b) 

Denoting the first-quantization one-electron part of the electronic Hamiltonian by 
h, and the distance from electron 1 to electron 2 by r~2, the AO integrals on the 
right-hand side of the Eqs. (16)-(20b) are 

h~,, = (Z,,(r)[ h lL,(r)), (21) 

h(n) = ½(L,(r) l _ i(r - R,,) x V + (X~, - Xv)hlT,,,(r)), (22) pl' 

1 1 
~7,,~p~ = -~( Z,,(rl) zp(r2) ~l 2 zv(rl)z~(r2)), (23) 

g(n) l (z,,(rl)zp(r2) X"(rl) - Xv(rl) -l- Xp(r2) - X~(r2) z~(rl)z~(r2)) , (24) 

( ocov\ , .  
Z,, OB / -~(Z,,(r)12X,,- Y(O)Iz~(r)), (25) 

~-~ (co,,] co,,) = ½(L,(r) IX~ - X~I z~(r)). (26) 

We have here used the shorthand notation 

= x . ( r )  --- iR,,× r 

Y(O) = Y(r, O) - i20 x r 

(27) 

(28) 

To specify the angular momentum operator completely, we must also detail the 
differentiated excitation operators. The excitation operators are defined in terms of 

a,.~(A ) and a.~(A°), which create and the creation and the annihilation operators + 
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annihilate electrons in the OMOs and therefore in the LAO representation depend 
on A ~ rather than A. The excitation operators are 

E,..(A ~) = ~ a+~(A~)a.~(A~), (29) 
a 

e,..pq(A ~) = E.,.(A~)Epq(A ~) + 6p.E,.q(A~), (30) 

where the summation in Eq. (29) is over spin. It is shown in Paper 2 that the 
differentiated excitation operators become 

(n)* E(n) ( 0  ~ E~).(O) = ~ (D~)(O)E,. + D,. (O)E,.,) + ±,.,t :, 
r 

e,...~(O)~n) = Em.("'(O) Epq + Em.E~nq)(O) + 6,.E~)q(O), 
with 

(31) 

(32) 

(33) (a) (n(B)+ + (B) E~m.(O) - ~ , ~ o ,  (O)a.o + a~a.o±(O)). 
c; 

Here (n)+ al,.a (O) and a~2~(O) are the parts ofda£~(A°)/OB and ~?a,~(A°)/OB at zero field 
that cannot be expanded in the original set of creation and annihilation operators. 
The expansion coefficients D~2(O) are the elements of an anti-Hermitian matrix, 
whose explicit form depends on the connection. According to Paper 3, these 
coefficients vanish for the natural connection: 

D~,(O) = 0. (34a) 

If instead the symmetric connection is used, we have shown in Paper 2 that the 
matrix has the form 

1 
D(mn).(O) = - ~  ~ K*mKv,(z,(r)]X~, + X~ - r(O)l zv(r)). (34b) 

~LV 
The final expression for the angular momentum operator can now be obtained by 
inserting Eqs. (12)-(34b) into Eq. (ll) and by using the commutator relation 

[ x . ,  h] = iR,, x V. (35) 

At this point we must choose connection. For the natural connection, Eqs. (20a) 
and (34a) should be used and for the symmetric connection we use Eqs. (20b) and 
(34b). In either case, the resulting angular momentum operator is 

m n  

1 
+ -~ E ~ (K,,*K,,,hm,(pl2Xv - Y(O)I v) 

r try 

, } -- K , , , , K v , ( # I 2 X , -  Y(O)] v)h,,) Era. 

+ z f  E , • K~,,,K,,.KppK~q 
m n p q  , , . l l vper  

X (/.~(rl)P(F2)X,u(rl)-Xv(l'l)-~-Xp(r2)-Xa(i"2)rl2 v(rl)°(r2)) 
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1 
K,,pgm..q)K~.(#12X. Y(O) lv) [Kl,mgrnpq + 4 Z  Z * * 

r Itv 

-- (K,,.g,.rpq + Kvqg,..pr)K.*(# I2X,,- Y(O)[ v>]}e~.pq 

m n  m n p q  

+ 6p, E~)~q(O)6p,). (36) 

Although the form of this operator is strongly influenced by the use of London 
orbitals, the integrals are all standard AOs. It is interesting to notice that the 
angular momentum operator is a two-electron operator, somewhat surprising since 
the first-quantization angular momentum operator is a one-electron operator. 
However, in the limit of a complete basis the operator in Eq. (36) becomes identical 
to the projected first-quantization operator as demonstrated in Paper 3. We give an 
alternative proof in Sect. 2B. In Sect. 2C we demonstrate that the gauge-origin 
dependence of the angular momentum operator in Eq. (36) corresponds exactly to 
the gauge dependence of the exact operator, even for finite basis sets. This result 
holds only for the complete operator in Eq. (36). Using the magnetic dipole 
operator obtained from the angular momentum operator together with the con- 
ventional electric dipole operator, we also show that rotatory strengths in RPA 
and multi-configurational (MC) RPA [24] are gauge-origin independent for finite 
basis sets. 

Before proceeding with these proofs, we comment on some of the characteristics 
of the natural and the symmetric connections. In the natural connection, the 
differentiated creation operators only contribute with terms from the orthogonal 
complement of the basis set. Therefore, all contributions to the angular momentum 
operator that can be expanded in our basis arise only through differentiation of the 
matrix elements. Moreover, these are the only contributions to expectation and 
transition values. 

When the symmetric connection is used, differentiated creation operators 
contribute with terms that are both inside and outside the basis set. In 
the symmetric connection the contributions from the differentiated matrix 
elements are independent of the gauge origin. The exact operator is gauge 
dependent, and in the symmetric connection this dependence arises through 
the differentiation of the creation and annihilation operators. The operator 
obtained by differentiating only matrix elements is unphysical in the symmetric 
connection. 

B. The angular momentum operator in the limit of a complete basis set 

The first thing to notice when discussing the LAO angular momentum operator 
(36) in a complete basis set, is that the terms involving E~.(O) vanish since there is 
no orthogonal complement to the basis. In the limit of a complete basis set we can 
also use the identity 

[r)(r[ = 1 ( 3 7 )  
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to show that 

r ~lv 

Z K:mKvnK~,K~q{ = p ( r l ) p ( r 2 )  
l~Vp(~ 

449 

I Z~;, - ¥(o) 1 v> 

2X;,(rl) ra22 Y(rl' O) v(rl)a(r2) ) (38) 

and the two-electron terms in the angular momentum operator therefore disap- 
pear. Using the commutator relation 

[Y(O), hi = i20 x V, (39) 

and the resolution of identity, Eq. (37), we obtain for the remaining one-electron 
terms of the LAO angular momentum operator 

£(0) = ~ (mlL(O) ln) E~n. (40) 
m n  

The first-quantization angular momentum operator appearing on the right-hand 
side is 

L(O) =- - i ( r  - O) x V. (41) 

Therefore, for complete basis sets the LAO magnetic dipole operator reduces to 
a one-electron operator that is identical to the usual second-quantization angular 
momentum operator. 

C. Gauge origin dependence of  the angular momentum operator and 
of  the rotatory strength 

When the angular momentum operator in Eq. (36) is used to compute expectation 
values and transition matrix elements, all terms containing (n) E±,,,(O) vanish. To 
simplify our discussion we neglect these terms in the following and we do so 
without specifically denoting this in the notation. 

Consider changing the gauge origin from O to O1: 

O1 = O + V. (42) 

The LAO angular momentum operator for the new gauge origin becomes 

L(01) =/~(0) + iV× ~ ~ ((m Irl r)hr. - h,.,(r [rl n))Emn 
?tin r 

i 
+ ~ V ×  ~ ~((mlrlr)g~.pq--g.. ,pq(rlrln) 

m n p q  r 

+ <p Irl r ) g , . . r q  - gmnp,(r [rl q))e,,,~q. (43) 

Using the commutator relations 

[Emn, Epq] = 6pnEmq - ~raqEpn, (44) 

[-E,s, emnpq] = 3msernpq -- 6rnemspq -F 6psemnrq -- 3rqemnps, (45) 

which hold for finite as well as complete basis sets, Eq. (43) can be rewritten as 

[,(O1) =/7,(0) + iVx [~,/4], (46) 
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where we have defined 
= ~ (m [r[ n)E,,,. (47) 

mn 

In RPA [16, 17] and MC-RPA [-24], the equations of motion for the linear 
response function ensure that 

<% I [~,/411 ~e.> = co.<~e0 Ill ,e.>, (48) 

where co, is the excitation energy for the transition go ~ ~P,. Therefore, the 
transition matrix element of iVx [~,/1] is orthogonal to the corresponding 
transition matrix elements of the electric dipole operator 

p~ = -~. (49) 

Hence, with the magnetic dipole operator defined from the LAO angular mo- 
mentum operator in Eq. (36) as 

~Amag(O ) = - - ½ / ~ ( O ) ,  ( 5 0 )  

the rotatory strength obtained from Eq. (1) using RPA and MC-RPA is gauge- 
origin independent for finite basis sets. In complete basis sets the left-hand-side of 
Eq. (48) is proportional to (~'ol~Zl~.) by the RPA and MC-RPA hypervirial 
relation, and the LAO rotatory strength in the velocity form is also gauge-origin 
invariant in this limit. By the same token the LAO velocity rotatory strength is not 
gauge-origin invariant for finite basis sets, in contrast to the situation for conven- 
tional basis sets. 

D. Magnetic transition dipole moment from linear response theory 

The magnetic transition dipole moment and the rotatory strength may be cal- 
culated from the residues of the linear response functions. To see this, we consider 
the time development of the average value of ~mag for a state I O) which responds to 
a time-dependent electric field resulting in the perturbation 

1~' = f~oo doh/~,1 exp [(-icol + e)t ]. (51) 

Here col is the frequency of the field and ~ a positive infinitesimal. Using overbar 
for the time-dependent perturbed state and no bar for the time-independent 
unperturbed state, the average value can be expanded in orders of the perturba- 
tions [18] 

<O [~magl O> = <O [~mag[ O> + dcol exp[(--icol + e)t] 
co 

)< ( ( ~ m a g ;  ~ e l ) ) ~ o l + i e  + ' "  (52) 

and the residues of the linear response function are given by [18] 

lim (091 - (Dn)<<f imag ;  f ie l>>z)  l ~-- <O[/imagln><n]/~=,[O>. (53) 
[Ol --* copl 
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Hence, the magnetic transition dipole moment and the rotatory strengths can be 
evaluated from the residue. From Eq. (52) it is also seen that the last two terms in 
Eq. (36), which describe the part of the field dependence of the creation and 
annihilation operators that cannot be expanded in the unperturbed orbitals, do not 
contribute in calculations of rotatory strengths. 

The dipole transition strength in RPA is size intensive [25]. Due to the 
guage-origin dependence the length formula for rotatory strength in conventional 
basis sets is not size intensive in RPA. On the contrary, since both the velocity 
formula and the LAO-length formula for rotatory strength are gauge-origin inde- 
pendent, RPA calculations of rotatory strength are size intensive when these two 
formulas are used. 

3. Calculation 

The LAO formulas for rotatory strength in electronic circular dichroism in the 
length form have been implemented in the ABACUS [26] program for SCF and 
MCSCF wave functions. The SCF implementation gives RPA response functions 
[16, 17] and the MCSCF implementation gives MC-RPA response functions [24]. 
The rotatory strength are the residues of these response functions. In the LAO 
implementation the conventional magnetic dipole operator is replace by the 
corresponding LAO operator (36). The RPA calculations are carried out in the 
atomic orbital basis with no reference to molecular orbital integrals. Our imple- 
mentation also includes the conventional basis length and velocity formulas for 
rotatory and oscillator strengths [1]. 

We have investigated with the SIRIUS/ABACUS [26, 27] program package 
the optically active molecule trans-cyclooctene (TCO). Experimentally, both ab- 
sorption and CD spectra have been recorded [20]. TCO is a prototype of inher- 
ently dissymmetric molecules and has been the subject of many theoretical 
investigations. Some of the first were semiempirical [-21] and minimal basis ab 
initio calculations [28]. The CD spectrum has also been modelled in CI calcu- 
lations on the TCO ethylene fragment, i.e., ethylene where the geometry is fixed as 
in the double bonded carbon structure of TCO [29]. The CD spectra of TCO and 
its ethylene and butylene fragments have been calculated in the RPA approxima- 
tion by Hansen and Bouman, who used localized orbitals to characterize the 
individual transitions and to decompose the rotatory strength into distinct contri- 
butions [22]. The simulated spectra of TCO were in fair agreement with experi- 
ments, while little regularity was observed in the spectra for TCO and its ethylene 
and butylene fragments. 

In this work the CD and absorption spectra of TCO and its ethylene (TCO-E), 
butylene (TCO-B), and hexene (TCO-H) fragments have been determined at the 
LAO RPA level. The calculations on TCO-E were used to select a basis for the 
larger systems and to compare the LAO rotatory strengths with non-London 
velocity and length calculations. The calculations here presented are closer to the 
RPA basis set limit than previous results and can therefore be used more reliably to 
compare the spectra of TCO and its fragments. 

The calculations were performed partly on a Convex 3840 and partly on a Cray 
92A. The computationally most demanding calculation was the one on TCO with 
216 basis functions (see below) and it took 4 h and 40 rain of cpu time on the 
Cray 92A. 
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./' \\/. 
Fig. 1. The structure of 
( - )-trans-cyclooctene (TCO) 
with labelling of atoms 

A. Geometries and basis sets 

We have used the geometries of Hansen and Bouman in the calculations on TCO 
(Fig. 1), TCO-E, and TCO-B [22, 30]. The geometry of TCO-H is in analogy with 
TCO-E and TCO-B obtained by replacing the Cs-Cv and C6-C8 bonds in TCO 
by C - H  bonds of 1.12 ,~ (see Fig. 1). The guage origin is in all calculations at the 
center of the C1-Cz double bond. 

We have used six basis sets in our calculations on TCO-E. In order of 
increasing size these basis sets are denoted A, B, C, D, E, and F. The A basis is the 
one used by Hansen and Bouman in calculations on TCO-E [22]. It is a double 
zeta basis augmented with split diffuse s and p functions on carbon. The remaining 
sets are generated from Dunning's augmented correlation consistent pVDZ and 
pVTZ basis sets [31-33]. For  basis B we used the aug-cc-pVDZ basis, but omitted 
the p functions on hydrogen and the most diffuse d function on carbon. Extra 
diffuse s (e = 0.015633) and p (~ = 0.013470) functions were added on carbon. The 
C basis is obtained from B by adding a diffuse s (~ = 0.009913) function on 
hydrogen. Basis D is identical to C except that the hydrogen p function of the 
cc-pVDZ basis is included. The E basis consists of the aug-cc-pVDZ basis aug- 
mented with the same diffuse functions that were added to obtain the B and C sets. 
The largest basis, F, corresponds to the aug-cc-pVTZ basis minus the two f func- 
tions on carbon, plus extra diffuse functions s (c~ = 0.014673) and p(~ = 0.011897) 
on carbon and s (e = 0.008420) on hydrogen. 

B. Results f o r  TCO-E 

The parent molecule TCO and the fragment molecules have C 2 symmetry and an 
A ground state. We have carried out RPA [16, 17] calculations to the eight lowest 
states of both A and B symmetry for TCO-E. The Hart ree-Fock ground state total 
energies are listed in Table 1, and the excitation energies are plotted as function of 
basis sets in Fig. 2a and b. The four lowest excitation energies of A symmetry are 
relatively stable towards basis set extensions. The next three A-excitation energies 
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Table 1. Energies (in Hartree obtained for the indicated 
molecules and basis sets 

Molecule Basis Size" Energy 

TCO-E A 42 - 77.998 291 
TCO-E B 56 - 78.015 685 
TCO-E C 60 - 78.015 746 
TCO-E D 72 - 78.028 801 
TCO-E E 94 - 78.030 285 
TCO-E F 128 - 78.048 088 
TCO-B C 120 - 156.079418 
TCO-H C 180 - 234.132 092 
TCO C 216 b - 311.031 901 

a Size is the number of basis functions 
b There are 232 AO basis functions but due to linear depend- 
encies are six OMOs  of A symmetry and ten OMOs of B sym- 
metry left out of the calculation 
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Fig. 2a. Plot of calculated excitation energies (eV) for transitions from the ground electronic state of 
TCO-E to the eight lowest lying excited states of A symmetry as function of basis set. b Plot of 
calculated excitation energies (eV) for transitions from the ground electronic state of TCO-E to the eight 
lowest lying excited states of B symmetry as function of basis set 

are relatively stable after the C basis. For excitations of B symmetry the five first 
transitions are fairly stable for all basis sets, while the three remaining transitions 
are relatively stable from basis C. These observations suggest that basis C is 
adequate for the calculations on the other fragments and TCO. 

The rotatory strengths calculated from the velocity, length, and LAO formulas 
are in the Fig. 3a-d plotted as functions of the basis set for the lowest two 
excitations of each symmetry. It is reassuring to note that the three formulas 
converge to the same values for basis F for all four rotatory strengths. The LAO 
formula gives better basis set convergence for three of the four rotatory strengths 
(1A, 1B, and 2B). This happens since the LAOs respond in a physically reasonable 
way to the external magnetic field. The rotatory strengths are dot products of the 
magnetic and electric dipole transition moments. The LAO basis does not improve 
on the descriptions of the electric dipole moments and the excited states. Therefore, 
the basis set convergence does not improve as spectacularly as in calculations of 
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Fig. 3a. Plot of rotatory strengths (10 -4° esu) calculated from the LAO, the velocity, and the length 
formula, as function of basis set for the first transition from the ground state of TCO-E to an A state. 
b Plot of rotatory strengths (10 -'~° esu) calculated from the LAO, the velocity, and the length formula, 
as function of basis set for the second transition from the ground state of TCO-E to an A state, e Plot of 
rotatory strengths (10-4o esu) calculated from the LAO, the velocity, and the length formula, as function 
of basis set for the first transition from the ground state of TCO-E to a B state, d Plot of rotatory 
strengths (10 -40 esu) calculated from the LAO, the velocity, and the length formula, as function of basis 
set for the first transition from the ground state of TCO-E to a B state 

magnetizabilities and atomic axial tensors. The results in Fig. 3 further support our 
conclusion that basis C should be used for the calculations on the other fragments 
and TCO. 

C. Comparing the results of TCO-E, TCO-B, TCO-H, and TCO 

For the calculations on TCO-B, TCO-H, and TCO we have used basis C as 
suggested by the TCO-E results. For TCO this amounts to 232 AO basis functions. 

Ground state energies are listed in Table 1, and the frequencies, oscillator 
strengths, and rotatory strengths calculated for the eight lowest excitations of each 
symmetry are listed in Table 2. In Fig. 4a and b the frequencies are plotted as 
functions of basis set. These figures show that the excitation energies change 
significantly when going from TCO-E to TCO-B but only slightly going from 
TCO-B over TCO-H to TCO. As seen from Table 2, the oscillator and rotatory 
strengths change significantly from one molecule to another. Compared to TCO, 
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Fig. 5a. The 16 calculated rotatory strengths (10 -4o esu) of ( - )-trans-cyclooctene plotted as a CD 
spectrum, h The 16 calculated oscillator strengths of ( - )-trans-cyclooctene plotted as an absorption 
spectrum 

we see that for TCO-H only 4 out of the 16 oscillator strengths and 8 out of the 16 
rotatory strengths are less than 50% off. Correspondingly, for TCO-B 5 oscillator 
strengths and 2 rotatory strengths are less than 50% off, and for TCO-E the 
numbers are 0 and 1. 

Our calculations demonstrate quite clearly that the absorption and CD spectra 
of TCO cannot be generated from any of the fragment molecules, although the 
number of strengths that agree increases with the size of the fragment. This 
observation agrees with the finding of Hansen and Bouman, although their 
frequencies, oscillator, and rotatory strengths differ from the values obtained here 
[22]. For TCO-E in basis A, the differences between the previous [22] and the 
present results are minor and are believed to stem from differences in implementa- 
tion and convergence criteria. For TCO the previous calculation [22] used a basis 
smaller than A for non-chromophoric atoms. 

To aid the comparison of the calculated TCO numbers with the experimental 
spectra of Mason and Schnepp [20], we have in Fig. 5a, b plotted the calculated 
absorption and CD spectra without simulating the line shapes of the individual 
partial and differential absorptions. Note that the experimental spectrum is for 
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(+ ) -TCO while our calculations are for ( - ) - T C O .  Therefore, the calculated and 
experimental rotatory strengths have opposite signs. 

The first significant feature in both experimental spectra are bands around 
5.1 x 104cm -1, corresponding to a transition that has been characterized as 
r~ -~ ~* in the ethylene chromophore [20]. The sum of the rotatory strengths of this 
transition and the two weaker transitions at 4.7 x 104 and 5.6 x 104 cm -1 is 
experimentally determined as 92 x 10 -`*0 esu  [20] .  The contributions from the 
weaker transitions have the same signs as the strong transition and are estimated to 
be 20% and 10%, respectively, of the total rotatory strength [20]. 

The calculated absorption and rotatory strengths at 5.6 x 104 cm- 1 correspond 
to the experimental transition at 5.1 x 104 cm-1. Two transitions are calculated 
around 5.3 x 104 cm-1. The rotatory strengths of these transitions have the same 
signs as the stronger rotatory strength at 5.6 x 104 cm-1. These transitions are 
taken to correspond to the experimental transition at 4.7x 104cm -a. Two 
transitions are also calculated around 5.8 x 104 cm -1. Although the rotatory 
strengths of these transitions have opposite signs of the strong rotatory strength at 
5.6 x 104 cm -1, these transitions are taken to correspond to the experimental 
transition observed at 5.6 x 104 c m -  1. The sum of these five calculated rotatory 
strengths is - 8 8  x 10 -4o esu, which corresponds nicely to the experimental value 
above. The contribution to this value from the two transitions around 
5.3 x 104cm -1 amounts to 35%. Correspondingly, the contributions from the 
transitions around 5.8 x 104 cm-  1 amount to - 2 1 % .  The calculated numbers are 
thus in reasonable agreement with experiment, although they indicate that the 
experimental bands at 4.7 x 104 and 5.6x 104cm -1 are both a sum of two 
transitions, and that the band calculated around 5.8 x 104 cm-1 has the sign 
reversed to what is inferred from the experiment. 

The second significant band in the experimental CD spectrum [20] has the 
opposite sign of the first one and peaks around 6.4 x 104 cm-1. Assuming a similar 
displacement of this peak as for the first peak, we expect that this transition should 
appear around 6.9 x 104 cm-  1. However, all 16 excitations we have calculated have 
frequencies smaller than 6.72 x 104 cm-  1 and this peak is therefore not observed in 
our calculations. 

4. Concluding remarks 

We have derived the second-quantization magnetic dipole operator that arises 
when London atomic orbitals are used. This operator depends on the LAOs, but in 
the final expression for the operator the integrals involve conventional AOs only. 
The resulting magnetic dipole operator is a two-electron operator, which converges 
to the exact operator in the limit of a complete basis set. For finite basis sets, the 
operator depends on the gauge origin in exactly the same manner as the exact 
operator. Rotatory strengths calculated in the length expression from this operator 
are origin independent in finite basis linear response calculations such as RPA and 
MC-RPA. 

The presented calculations on trans-cyclootene and its fragments, indicate that 
the basis set convergence of rotatory strength is favorable for calculations using the 
derived operator in the length formula as compared to conventional calculations 
based on standard basis sets. The calculated absorption and CD spectra are closer 
to the RPA limit than previous calculations, and the calculated spectra compare 
well with experiment. As concluded by Hansen and Bouman [22] little regularity is 
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f ound  w h e n  c o m p a r i n g  the  spec t ra  of  T C O  and  its f ragments .  There fore ,  l i t t le  
i n f o r m a t i o n  a b o u t  the  T C O  spec t ra  can  be deduced  f r o m  ca lcu la t ions  on  the  
f ragments .  
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